Category Archives: Genres

Almost ready to count!

After many weeks of thinking and writing, at last I have posted the first major chunk of my math relearning project. The result: I now know what a number is. I still need to write about place value and some … Continue reading

Posted in Math relearning, Productivity, Site updates | Leave a comment

Some rethinking, a trip to Chicago, and a workshop

Last week I added a chapter to my Pychyl summary, posted my first chunk of epistemology notes, posted some of my drawing exercises to DeviantArt, and began reviewing my project choices. The epistemology notes are for the book’s introduction, and … Continue reading

Posted in Immanuel prayer, Life updates, Projects, Site updates | Leave a comment

Accelerating

I haven’t gotten as much done in the last week as I wanted, mostly because I’ve been trying to finish a freelance project and because my sleep schedule is still wobbling, which leads to naps, which throws off my productivity. … Continue reading

Posted in Life updates, Projects, Site updates, Social issues, Thought, Weddings, Wiki | Leave a comment

The hive is alive

It might not look like it, but I’ve actually been a busy bee around this place. When I actually faced the fact that I now had a wiki waiting to be filled, I felt a bit intimidated and knew I … Continue reading

Posted in Life updates, Projects, Site updates, Wiki | 2 Comments

Andypedia

If you are a frequent visitor of my website (and who isn’t?), you may be have loaded it in the past few minutes and found yourself feeling surprised, confused, perhaps even alarmed, flabbergasted, and other such emotions. This is because … Continue reading

Posted in Site updates | 2 Comments

A done cake with freedom frosting

Today marks the end of a long series of projects that have occupied me since at least January, projects I took on to help out other people. They were all worthwhile, but they did keep me from most of my … Continue reading

Posted in Life updates, Productivity, Projects, Stephen Ministry | 1 Comment

Andy’s life, seasons 30-35

If you missed it, here’s a recap of my life over the past six years. Background In the years after I graduated from college (2000) and almost all my friends had left the area, I lived fairly normally, but it … Continue reading

Posted in Life updates | Leave a comment

On the way to the next stop

I bet you thought I’d forgotten about the site again. Well surprise! I haven’t. I’m working on my big life update entry. I’ve just been preoccupied with searching for grad schools and dealing with some back end issues with my … Continue reading

Posted in Site updates | 12 Comments

A new chapter for my site

Hello, everybody! If you flip through my archives, you may notice that I haven’t updated this site regularly in, well, years. There are various reasons for this, but I’ve become more focused in the past few months, and I’m hoping … Continue reading

Posted in Blog, Drupal, Grad school, Life updates, Projects, Site updates, The Thinkulum, WordPress | Leave a comment

A Framework and Agenda for Memory Improvement, part 2

Continued from part 1.

Memory skills

We can make use of these memorization components by exercising various skills. I don’t think I’ll have a real grasp on this section until I’ve experimented much more with different learning techniques. But I’ve grouped the skills I’ve found so far into several interrelated categories that loosely form a sequence: focusing, observing, selecting, enhancing, organizing, associating, rehearsing, and searching. The first of these is a general skill, the next several are storage skills, and the last is a retrieval skill. To memorize for long-term recall, you need to corral your attention, ask yourself questions about the information, pick out the information you need to know and the other information that will help you remember it, get the information into an easily memorizable form, arrange it all so you can easily link the information together, mentally form the connections, cement the connections over time, and then search your mind for the information when it’s time to recall it. In reality when studying various types of material for different purposes, you’ll mix these skills together rather than following them in a set sequence.

Focusing

Attention is a fundamental requirement both for active memorizing and for retrieval. So the first set of skills you’ll want to employ are those that focus the attention. The goal with these practices is to remove external and internal distractions.

For external distractions, you’ll need to find a place and time that will keep you away from them. Find a quiet spot in the house, turn off the TV, go to the library, whatever circumstances you find the least distracting. You may have to observe yourself for a while and experiment with different setups. I like to sit in my car in a parking lot when I’m doing work that requires concentration.

For internal distractions, you’ll need to settle or temporarily put aside disruptive thoughts and emotions. As I mentioned above, strong emotion, especially stress, can be a distraction from learning. So it pays to learn to relax and to remove stressors from your life. Relaxation techniques such as deep breathing exercises can go a long way to calm intrusive emotions.

For thoughts that pull you away from the task at hand, it helps to write them down or tell them to someone, at least in summary form. That gives the part of your mind that’s concerned about them the assurance that you’ve given those thoughts some of the attention they deserve and that you’ll deal with them later, even if you haven’t completely resolved them now.

And if you’re feeling worried about your memory’s performance when it’s time for recall, then the answer is to build your confidence. Your general confidence in your memory will grow as you practice the skills over time, especially when memorizing isn’t crucial. Then when you need to memorize something and the stakes are higher, studying to the extent that you overlearn the material will build your confidence that you know it, which will reduce your stress when it comes time to recall it {64-66}.

Even if potential distractions are nearby, you may also find certain physical conditions for your study session that put you in a frame of mind for concentrating, such as playing certain kinds of music or simply sitting at a desk or in a room that over time you’ve associated with focused work {69}.

In addition to removing distractions, you can help yourself focus by your attitude—gaining an interest in the material you’re learning. This has the added benefit of making the material more significant, which will make it easier to remember {70-71}.

You can do a number of things to create interest while studying, which I’ll talk about below. But it can help to start the study session by reminding yourself of the reasons focus and interest are important. And if you can find reasons that are actually important to you personally and not simply reasons other people have for learning, that will be more convincing to you.

Observing

The rest of the skills relate to working with the specific information you’re memorizing.

Observation is the skill of directing the attention to the specifics of what you’re learning, now that you’ve focused that attention. It’s the skill of noticing an item’s properties, both internal and external (its features and connections). These are the handles you’ll use to retrieve the information, and the main purpose of observation is to prepare the material you’re learning for planting in your mind via association and rehearsal.

For this skill, keep in mind that I’m using the word item flexibly. An item can be anything from a single word to a whole book, to use a verbal example. An item can be subdivided into other items so you can concentrate on memorizing them separately, or it can be combined with other items to form a new whole, a process I’ll cover in the association section below. Before an item is subdivided, you can think of its sub-items as some of its properties.

One good way to direct your attention is to ask yourself questions. A question is a type of cue. It gives you a set of properties and prompts you to find the item that matches them and to answer with a label that represents the item. The difference between an observation question and a recall cue is that when you’re observing, you’re looking for items in the material you’re studying as well as in your mind.

Since observation plays a part in several of the other memorization skills, questions are a tool that will appear in several of the following sections.

Selecting

The most straightforward task related to observation is what I’ll call selection. This is the skill of identifying which information is worth noticing.

Two other questions will help you discover which information that is. First, what do you need to know from this set of information? Or coming at it from the other side, what cues do you expect to receive for recalling the information? And second, what information will help you remember it? The answer to this one encompasses at least two types of information. One type is information that’s significant to you, since we can use that to raise the significance of less memorable information. The other type is information that may be in your mind at the time you need to remember the item, such as another item you’ve just recalled. This information can act as a cue if you’ve associated it with the item in question.

These two types of information worth noticing are another example of an internal-external division. The cues (which tell you what you need to know) indicate what information is important to your circumstances (which are external to you), and significance indicates what information is important to your mind (which is internal to you). Of course, the same information may be important to both. I’ll call the cue-based information important information and the significance-based information memorable information.

Important information

Two main reasons for observing properties that are related to your expected cues are, first, to make sure you cover everything you need to learn and, second, to decrease your mental load by ruling out the things you don’t.

A first natural question is what your expected cues are. That is, what do you expect to encounter that will prompt you to recall this information?

If the cues aren’t immediately obvious, try approaching the answer by asking yourself what context you’ll be in when you need to recall the information, such as an exam, a meeting, a party, or traveling. In an exam, the cues will be the test questions. In a meeting, they might be questions posed by the other attendees or simply the invitation to begin giving a presentation. At a party, they could be the greetings of the other guests, which would prompt you to recall their names and other information about them. While traveling, the cues might be landmarks, which would prompt you to recall the need to turn, stop, or look for the next landmark.

Once you know the recall context and the types of cues you’ll encounter, you can imagine yourself in that context and begin to list the specific cues you expect to find. For example, who specifically will be at the party? What questions will likely be on the exam? What will the people in the meeting want to know?

And once you have the specific cues, you can observe the responses to them that are available in the information you’re studying.

Memorable information

You will naturally react to much of the information you encounter. This information is already memorable to you, and you probably won’t have trouble remembering at least the gist. The skill is to notice these reactions when they happen so you can take advantage of them to add significance to the rest of the information. You can observe your reactions as you view each item for the first time, asking yourself how you’re reacting to this item, or you can review your reactions after you’ve seen all the material, asking yourself which items you recall reacting to.

Observing your reactions is useful because if you can draw your attention to information that’s significant to you, you’re more likely to recall it when you’re looking for ways to make the other information more memorable.

Enhancing

For the material that doesn’t seem very memorable, you’ll need to associate it with other information that is memorable or with information that draws out its significant aspects. The actual association will come later. First you need to pick out the specific memorable information to associate the forgettable item with. Since this skill involves expanding on each item in various ways and since elaboration is already taken, I’m calling it enhancement. I call the items that will make the item in question more memorable helper items.

When you’re looking for helper items, first tell yourself that there is something interesting about the information, even if you can’t see it yet. Then with that attitude in mind, do some more observing. Sharpen your observation of the information’s features and expand your awareness of its connections. You can do this by asking more questions: How does this information make sense? Understanding is typically an important first step in committing an item to memory. What interests other people about this information {72}? Assume they have a good reason! Why was this information included? Assume it has a real point! How does it relate to other items in the material? It may help to think in terms of relations like causation, implication, similarity, and contrast. What does the information remind you of that’s already familiar to you {53}? This question will be important again when you’re using the skill of translation, which I’ll describe in a later section.

The answers to most of these questions don’t have to make sense. Certainly you should try to understand the material’s actual meaning. But the mind can invent connections that are significant without being logical {94}. Bizarre juxtapositions tend to be memorable, for example {107}. To use our terminology from earlier, an item’s properties can be natural or incidental, so feel free to take advantage of both.

Translating

One important type of enhancement is translation, creating an item that you intentionally view as equivalent to the original item. You can think of translation in terms of the RDF triples I mentioned earlier. An item can be linked to its properties via different relationships. These are the predicates of the triples. The causation, implication, similarity, and contrast from the enhancement questions above are some possible relationships. Equivalence is another one. In this relationship, the property specifies another item, a substitute item, that stands for the one you’re studying {109}, which I’ll call the target item. In identifying this property, you’re translating the item you’re learning into the substitute item. If the substitute item is very memorable and it cues you to remember the original item, then it makes the original item easier to access in your memory. This is the idea behind many mnemonic techniques and systems.

What kinds of items would you need a substitute for? Generally, any item that you expect not to be memorable, anything that seems boring or meaningless to you. More specifically, researchers have found that most people have a harder time remembering words than images, and abstract words such as timeless tend to be harder to remember than concrete words such as apple {38, 57}. People also find proper names hard to remember {192}, even though names are concrete in a way, since they usually represent people and physical objects.

What kinds of substitutes are helpful? A substitute should have at least two characteristics. First, it should have some kind of connection to the target item that makes sense to you. That is, it should share some properties with the target item that are significant to you. For example, you could choose a substitute that sounds similar to the words of the target item, such as substituting celery for salary. Or you could choose a substitute that symbolizes the target, such as imagining a set of balancing scales for the term justice {109}. It’s important for the connection to be meaningful. If you choose a completely arbitrary substitute with no meaningful connection, it will be hard to remember the connection, and the substitute won’t be able to act as a handle very well. Or if you memorize that meaningless connection well and then you run across a target item that the substitute would work much better for, you might confuse the new target with the old one when you’re using the substitute for recall. It’s not important for the connection to be meaningful to everyone, only to you, unless you want the substitute to make it easy for everyone to memorize the item.

The second characteristic of a substitute is that it should represent the target item uniquely. If you choose a substitute that could be tied to a lot of different items, it might be hard to remember which item you need at the time. For example, if you’re memorizing the word frozen yogurt and you picture a bowl of it, you might accidentally recall the word ice cream if you don’t encode more carefully while you’re learning it {119}.

The substitute isn’t meant to be a definition of the target item, only a cue. Its relationship to the target item can be purely incidental. It’s only a handle for pulling the information into your conscious mind. Once it’s there, you can put the substitute out of your mind for the moment and think about the target information normally. This approach lets the substitute do its job of adding significance to meaningless information while keeping the substitute from getting in the way of using the target information itself.

The substitute item will often be in another mode of expression from the original item. It can be helpful to augment your learning by translating the information into the most memorable modes for you and even into multiple modes. Most mnemonic systems are based on translating verbal information into mental images {103}. And in addition to visualizing the information, you might also want to vocalize it, speaking the items out loud.

I often struggle to find a substitute word as quickly as I need in order to memorize things on the fly. I would like to get better at this. It would help to memorize a lot of substitute words beforehand so I don’t have to be creative in the moment when I’m frantically trying to memorize the material in front of me. I want to write a program to create a dictionary of substitute words and phrases for names and common words. I also want to identify commonly used elements, such as days of the week and family relationships, that I can make a special effort to memorize.

You can also take a poetic or musical approach, giving the material a rhythm, making it rhyme {111}, setting it to music, or all three. And if you can, perform this poetry or music for yourself out loud so that your mind can more fully encode the experience.

Since most mnemonic systems take a visual approach and not everyone is visual {118}, I would like to find or develop a system along these auditory lines. The things I’d have to collect would be common rhyming words to translate harder words into, rhymes for commonly needed words, common poetic meters, and familiar melodies. The musical system could also use different aspects of music to encode things, like intervals, chords, keys, time signatures, and key signatures, if those things would be memorable. It would be good to see research about that.

I would also like to explore a kinesthetic approach to memorization, though I’m not sure what it would look like, maybe creating actions that you associate with the information and arranging the actions into sequences to represent the relationships between the items. Sign language might be helpful here.

Organizing

The purpose of organizing is to bring together items that will help you remember more of the material. As I said in the selecting section, if you’re memorizing a set of information, you’ll often want each piece of information to remind you of other information in the set. You’ll also want more significant items to prop up the less significant ones. Thus, it helps to see them close together so you can easily associate them later.

One type of organization is to group the items. If the items are related logically and you’re free to rearrange them, then you can group the information by category {51}. This gives you a chance to associate the category with all the items within it. Restating pairs of items as RDF triples could reveal categories you can group the information into, if the RDF idea helps you. Another type of organization is to arrange the items in a logical sequence, which lets you associate each item with the next in the sequence {133}.

As you’re organizing, there are at least two other general questions to keep in mind. One is which item you should remember first when recalling a set of items {135}. And the other is how you’ll know when you’ve recalled everything you need from the set. To answer the second question, you can observe the total number of items in the group, or if they form a list, the last item in the list. Once you’ve recalled that number of items or that last item, you’ll know you’re done {133}.

Associating

Association is the skill of mentally assigning properties to an item. Or to say it another way, it’s cementing multiple items together in your mind. You can associate as many items as you want, but for simplicity we’ll assume it’s two. You can associate the information actively or take advantage of the passive associating your mind is already doing.

Active association

As I understand it, the way to associate two pieces of information is to create a new whole that incorporates both of them. The new whole, of course, is another item with its own set of properties. You’d think this would just give you more to study and take up more time. The goal, though, is to create associations that are memorable enough that you won’t need to spend much time studying them {166, 180}.

There are several types of wholes you can form through association. If you’re visualizing the items, the new whole could be a scene in your imagination that features the two items interacting {104-105}. If the information is purely verbal, it could be a sentence or rhyme that incorporates them {111}. Another type of whole is a sequence of events that the mind groups together. I place classical and operant conditioning in this category. Pavlov rang a bell and then fed his canine subjects, so later when he rang the bell again, the dogs expected food.

Simply grouping the items can tie them together, at least in short-term memory. If you’re memorizing a series of digits, such as a telephone number, then grouping them into chunks of two or three can keep them in your short-term memory longer. Memory researchers call this practice chunking {20}.

Chunking can also let you create more complicated associations. You can chunk items together that you have associated with other items. For example, an acronym is a chunk of letters—a word—whose letters represent other words. Once you remember the word, you can break it down into its letters and remember the other words the acronym is associated with {98}.

One effective visual way to establish associations in your mind is to group the information spatially. Group the items you’re associating into different regions of a page or some other surface. Along these lines, you could create a map that relates the items to each other in some way, using geography as a metaphor if the information isn’t geographical. Grouping the items physically is effective because the mind remembers at least basic spatial relationships very easily {150-152}.

Another mode of expression that serves in association is storytelling. Humans are narrative beings. We naturally think in terms of coherent sequences of events, and we care about them, especially when they have to do with us. So one type of association that can add significance to the material you’re learning is telling a story that incorporates it {135}, especially a story that relates to your life. It doesn’t have to be realistic, just memorable.

Passive association

Even without consciously trying, your mind associates things all the time. You can take advantage of passive association by controlling the context in which you learn things.

In particular, your mind associates things in your environment with things you’re doing. So if you’re studying for a test, it can help to study in the room you’ll take the test in. The features of the room may remind you of the information you studied there. The same goes for when you’re rehearsing for a performance {67-68}. And as usual, your mind isn’t picky about whether the associations make sense. Most of these associations will probably be for incidental rather than natural properties.

Since interference is always a problem, it helps to memorize different pieces of information in different settings, whether different locations entirely different parts of the place in which you’ll be recalling the information {76-77}. That way, if you remember where you were when you learned that thing you’re trying to recall, there’s a chance something about that setting will cue your recall of the information.

Making use of passive association is easiest to do with your external context—where you are—but it also includes your internal context—what state of mind you’re in. It also helps to try to learn the material in the same mental condition in which you’ll recall it (the same mood, for example). So if you’re going to be sober when you take a test, don’t be drunk while you’re studying for it {69}.

Rehearsing

Even the most memorable information will fade over time and become hard to recall if left alone. So in addition to enhancing and associating the information, you need to rehearse it. Rehearsal can take the form of both repetition and recitation, but recitation will cement the information in your mind more quickly.

You can rehearse through recitation in a number of ways, such as using flashcards or having another person quiz you. But the basic procedure is to present yourself with a cue and then take a few seconds to try to recall the corresponding items. Then receive feedback on your result. If you were able to recall something, check the answer to see if you were right.

If your recall was wrong or you couldn’t recall the item at all, use the feedback as a way to repeat your mental storage of the information, maybe looking for a new way to enhance it. Then cue yourself for the information again later. Feedback both lets you assess your knowledge and sustains your interest in the material {72-73}.

Forgetting takes a certain shape over time. You forget most of what you learn right after you’ve seen it for the first time. After that the rate at which you forget the material slows down and levels off {35}. So your first study session should be a review of the material right after you first encounter it {89}.

Learning also takes a certain shape over time. Your study sessions for the material should be frequent at first, but you can space them out more and more as your recall of the material becomes easier {89-90}. There are several algorithms for this kind of spaced repetition that can help you schedule your learning, such as the Leitner system.

Searching

The mind stores information by indexing it by its properties. These properties are handles you can grab to retrieve the information as you search your mind for it based on those properties. So when you want to recall something and it’s not coming to mind right away, you can try to find it by suggesting properties to yourself that the information might have and seeing if the suggestion brings the information to the surface. Try to think of as many related types of information as you can, and one or more may trigger the memory. For example, if you enter a room and don’t remember why, look around the room in case your purpose was related to any of the objects in it, retrace your steps in case your previous locations gave you a reason to enter the room, and remember what you were talking or thinking about {Higbee 211}. Kenneth Higbee calls this the “think around it” technique {55-56}.

Applications

The components of memory I’ve discussed can be put together and applied to various problems that require memorization. Programmers sometimes write cookbooks that contain example code. The examples solve common problems in a particular language that don’t have immediately obvious solutions. Using the elements of memory in the above analysis as a rudimentary mental programming language, I’d like to do the same for common memory tasks. These applications can be built up in layers, with simpler applications becoming components in more complex ones. I’m organizing this section around tasks rather than the techniques that accomplish them, because each task can encompass a number of techniques. Since this essay is a summary and I haven’t thought very far about most of these applications, I’ll only cover them briefly here.

Holistic information

This category includes memorizing text, images, concepts, and music. With this type of information, it doesn’t work well to break it into a list of small components and then string them together with a series of associations, as in the mnemonic systems below. You have to recall it rapidly and fluidly, sometimes even nonlinearly, so it needs to be stored efficiently as a whole unit. You can think of it as assigning a single value, such as a string, to a variable.

One good tool for rehearsing text is the erasure method, where several words are erased at random from the text before each repetition. This allows the surrounding words to serve as cues for a word that’s been erased.

Dates and times

One useful element to encode mnemonically is dates and times. This gives you a way to timestamp your memories, plans, and any other time-specific information. It would be an essential component of any mental task management system. The technique I have in mind would be to encode each component you needed (day, month, year, hour, minute, etc.), and then associate them all together. Then associate the whole clump with whatever information you want to timestamp.

Names and faces

Remembering names and faces is a very popular use for memory techniques {Higbee 194}. People are very important, but names by themselves are fairly meaningless, and faces can often look alike to the untrained eye. The techniques for remembering them are apparently the same from book to book. The idea is to find a visualizable substitute word for the name and associate it with a distinguishing feature of the face {194-198}. But I have my own spin on the details, and maybe some of the books take this approach too. It can be hard to recognize a distinguishing feature unless you know what the nondescript version would look like {Redman 1-2}, and it’s also harder to identify features when you don’t have a vocabulary for them {Higbee 191}. So I’d like to try using the techniques of caricature artists and, if I’m feeling really enthusiastic, the vocabulary of forensic artists {George chapter 1} to locate and name what’s unique about a person’s face. One benefit of having a technical vocabulary is that you can use substitute words for those terms and associate them with the substitute word for the person’s name. If you’re not very visual, this could be a helpful technique.

Experiences

There are a number of reasons you might want to remember your experiences in detail. For example, you might want to relive your good memories, which can happen more vividly if you remember more about them. It also gives you a better story to tell. If you’re giving eyewitness testimony, you can provide a better account. And if you’re learning a skill, remembering your mistakes and successes with the skill is important.

Probably some of the important factors in remembering experiences are knowing in advance what kinds of things to observe in your experiences, having a reliable way to represent sequence relations to yourself (i.e., this event followed that event), and developing the habit of reviewing the experience right after it happens.

Complex sets of information

This is often a facet of studying for a school or certification exam, but complex information shows up other places too. Many people’s jobs involve knowing complex webs of facts and concepts. What are the best ways to organize and memorize these webs?

Mnemonic systems

A mnemonic (pronounced without the first m) is any method for aiding the memory, though most researchers define it more narrowly in terms of elaborations, aids that rely on what I’ve called incidental external properties. Kenneth Higbee helpfully distinguishes between single-purpose mnemonics, which he calls mnemonic techniques and general-purpose ones, which he calls mnemonic systems {Higbee 94-95}. An example of a single-purpose mnemonic is using the acronym HOMES to remember the Great Lakes: Huron, Ontario, Michigan, Erie, and Superior {98}. Much of this essay has dealt with the principles that seem to lie behind both types of mnemonics. In this section I’ll talk about mnemonic systems.

Memory specialists describe a number of mnemonic systems you can use to memorize certain kinds of lists. Higbee includes five mnemonic systems in Your Memory: Link, Story, Loci, Peg, and Phonetic. The Link system involves visualizing each item of a list and associating that item with the next item in the list {133}. The Story system involves creating a story that incorporates each item in sequence {135}. The Loci system involves memorizing a series of familiar locations, such as the rooms of your home, and then visually associating each item of a list with one of those locations {145}. The Peg system involves memorizing substitutes for a set of numbers or letters and then visually associating each list item with the corresponding number or letter substitute in sequence {157-161}. The Phonetic system involves memorizing a set of consonant sounds for each digit (0-9), translating any numbers you’re memorizing into the consonant sounds of their digits, adding vowel sounds to create words, and, if the numbers are meant to give order to a list, visually associating each list item with the word representing its number in the sequence {173-178}.

One aspect of memorizing complex information is to mnemonically create data structures in your mind, the kinds of data structures that are fundamental to programming. Higbee’s five systems fall under the categories of linked lists (Link, Story) and arrays (Loci, Peg, Phonetic). But there are other data structures: stacks, queues, multidimensional arrays, hash tables, heaps, graphs, weighted graphs, and various trees (binary, red-black, 2-3-4) {Lafore}. We can find ways to organize and associate information to mentally build these and any others we need.

The key to creating these mental data structures and inventing others is to break them down into sets of key-value pairs. To memorize the pairs, you associate the key with the value using the techniques from the association section above.

Even a simple scalar variable is a variable name paired with the value assigned to it. The set of variables in a running program can be thought of as a hash table with the variable names as the keys. And you can think of an array as a hash table with the index numbers as the keys.

If you’re using the data structure in a larger context and you might confuse its items with data from another structure, you could encode the keys using a different method or category (such as using animals for one variable’s keys and plants for another’s), or you could include the variable name with each key. So if you’re using a visual mnemonic technique, you’d create one image that incorporates your substitute images for the variable name, the key, and the value.

This last technique treats the key as an address for the value. The value lives at key X within variable Y. You can extend this technique to account for data structures with several levels, such as trees or multidimensional arrays. This approach also treats the data structure like a database table with a primary key made up of several fields.

In addition to creating the data structures themselves, it’s important to know basic algorithms for inserting, deleting, sorting, and searching for items in them, so I’d like to develop mental versions of those tasks too.

Rehearsal

Another aspect of memorizing complex information is to drill yourself, such as with with flashcards, which are an easy way to take advantage of spaced repetition. People normally use flashcards to study binary facts, such as sets of foreign vocabulary words. But as we’ve seen, key-value pairs can represent most types of information. This includes the points in an outline, the relationships in a concept map, or the cells in a table. So you could conceivably use flashcards to memorize these types of charts as well. I’d like to program a tool that will convert things like outlines and tables into flashcards.

Studying for an exam

My first motivation for learning about memory was to study more effectively for tests and not worry that I didn’t know the material. Studying effectively turns out to be a complex process of planning your study time and place, taking on the right attitude, organizing the material, and using effective memory techniques. Some type of chart would be helpful in making decisions about these steps.

Task management

My latest motivation for learning about memory has been to supplement the productivity system David Allen describes in his book Getting Things Done (often abbreviated GTD). Allen emphasizes recording your tasks in an external system, such as a planner, that is organized by context, because you can’t rely on your mind to remember everything you need to do when you’re in the right time and place for doing it {Allen 16, 21-23}. I think that the way GTD brings together the concepts of context, next actions, and horizons of focus is brilliant and very effective for helping to stay on top of one’s internal and external commitments. I also agree that an external system is easier to rely on than the mind. But is it really true that the mind is useless as a task manager? I think that using memory techniques creatively, it’s possible to do GTD mentally. For example, you could create a substitute item for each context and associate it with your list of next actions for that context, which you could memorize using the Link system. But at the very least, you can use memory techniques to remember tasks long enough to write them down later if you come up with them in the shower.

Next steps

My next step is to begin experimenting with memory techniques by memorizing things that are important to me. I’ll especially concentrate on finding substitute words and developing techniques for selecting, enhancing, and organizing.

References

“Leitner system.” Wikipedia. http://en.wikipedia.org/wiki/Leitner_system.

“Resource Description Framework.” Wikipedia. http://en.wikipedia.org/wiki/Resource_Description_Framework.

Allen, David. Getting Things Done. New York: Penguin, 2001. Preview at http://books.google.com/books?id=iykLVJAK49kC.

Baddeley, Alan. Your Memory: A User’s Guide. New illustrated ed. Buffalo, NY: Firefly, 2004.

Crowder, Ben. “Erasure.” BenCrowder.net. http://bencrowder.net/blog/2011/03/erasure/.

George, Robert M. Facial Geometry: Graphic Facial Analysis for Forensic Artists. Springfield, IL: Charles C Thomas, 2007.

Gladwell, Malcolm. “The Art of Failure.” New Yorker, August 21, 2000. http://www.gladwell.com/2000/2000_08_21_a_choking.htm.

Higbee, Kenneth. Your Memory: How It Works and How to Improve It. 2nd ed. New York: Prentice Hall, 1988. Preview at http://books.google.com/books?id=N6FPQzBpheEC.

Lafore, Robert. Data Structures and Algorithms in Java. 2nd ed. Indianapolis, IN: Sams, 2003.

Redman, Lenn. How to Draw Caricatures. Chicago: Contemporary, 1984.

Worthen, James B. and R. Reed Hunt. Mnemonology: Mnemonics for the 21st Century. Essays in Cognitive Psychology. New York: Taylor & Francis Group, Psychology Press, 2011.

Revision history

  • Version 0.1.0, 2012-03-29
    • Initial draft.

Continue reading

Posted in Essays, Memory | Leave a comment